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ABSTRACT 

Inspired by the human visual system, visual attention 
(VA) models seem to provide solutions to problems of 
semantic image understanding by selecting only a small 
but representative fraction of visual input to process. 
Having proposed a spatiotemporal VA model for video 
processing in the past, we propose considerable 
enhancements in this paper, including the use of steerable 
filters for 3D orientation estimation, and of PCA for 
fusion of features for the construction of saliency 
volumes. We further employ segmentation and feature 
extraction on salient regions to provide video 
classification using an SVM classifier. Finally, we 
provide results on sports video classification and 
comment on the usefulness of spatiotemporal VA for such 
purposes. 

 
1. INTRODUCTION 

Considerable research has been carried out into the 
mechanisms of attention in the human optical system. One 
of the main tasks of selective visual attention (VA) 
models is to select a small fraction of important 
information in visual input, in a way similar to humans. 
Saliency-based attention has been computationally 
modeled in the last decade by Itti and Koch, [1], and 
seems to provide a reasonable first step towards the 
understanding of the visual input. Bottom-up attention, 
i.e., employing no a priori knowledge, has been employed 
as a pre-processing step towards more complex tasks like 
object recognition [9], visual context analysis [18], or 
image retrieval [19]. 

Having previously suggested a spatiotemporal VA 
model , [10], [11],, extending existing approaches and 
enabling processing of video apart from still images, we 
now investigate the application of this model to video 
classification. Image and video classification is a valuable 
tool towards other applications like object detection and 
recognition, visual content description, semantic metadata 
generation, indexing and retrieval. Unfortunately, it is an 

unsolved problem that requires bridging the gap between 
the target semantic classes, and available low-level visual 
descriptors. Regardless of whether classification is 
supervised or unsupervised, and regardless of the specific 
classification model employed, e.g., expectation 
maximization, vector quantization, k-means, [2], support 
vector machines (SVM) [3], or neural networks, it is 
commonly believed that in order to achieve robust global 
classification, i.e. without prior object detection or 
recognition, it is crucial to select an appropriate set of 
descriptors. 

Visual descriptors usually have to capture the 
particular properties of a specific domain and the 
distinctive characteristics of each image class. For 
instance, local color descriptors and global color 
histograms are used in indoor/outdoor classification [7] to 
detect e.g. vegetation (green) or sea (blue). Edge direction 
histograms are employed for city/landscape classification  
[4] since city images typically contain horizontal and 
vertical edges. Additional motion descriptors are also used 
for sports video shot classification [5], [6]. 

Even in specific domains and appropriately selected 
descriptors, classification usually fails in several cases 
like close-up scenes (e.g., faces). If we could select the 
regions in an image or video that best describe its content, 
a classifier could be trained on such regions and learn to 
differentiate efficiently between different classes. This 
would also decrease the dependency on descriptor 
selection or feature formulation. Our  claim, and at the 
same time the inspiration for this work, is that the output 
of our model, namely the spatiotemporally salient regions, 
are representative of the input video and therefore can be 
exploited to provide a more intuitive approach for 
classification purposes, especially in the absence of a 
priori knowledge or object recognition. 

Our spatiotemporal VA model [10] is an extension of 
Itti et al.’s scheme that treats the temporal dimension of a 
video sequence as an intrinsic feature and provides a 
unifying framework to analyze the spatial and temporal 
video organization. In this framework, we treat a video 



sequence as a volume with time being the third 
dimension. This volume is decomposed into a set of 
distinct feature volumes such as luminance, red, green, 
blue, yellow hues and various spatiotemporal orientations. 
A normalization operator is responsible for further 
enhancing salient regions of each volume, while the 
salient volume is obtained by simply averaging the 
enhanced ones.  

In this paper, we present an enhanced version of our 
spatiotemporal VA model aiming to overcome specific 
drawbacks of the existing one. In particular, we develop a 
more robust, in terms of consistent results, method for 
generating the 2D and 3D orientation volumes, employing 
steerable filters. We also propose a new normalization / 
fusion operator that is based on Principal Component 
Analysis (PCA) [2], to substitute the traditional 
normalization/averaging process. Further, we develop 
segmentation and feature extraction to generate a 
description of a video volume based on a set of most 
salient spatiotemporal regions. Subsequently, an SVM 
classifier uses this description to classify entire video 
shots, and this framework is applied to the classification 
of sports video. 

What is most important in the novel steerable filter 
approach for orientation estimation, is direct relation to 
motion analysis. In particular, one popular set of models 
for the extraction and analysis of motion is based on 
spatiotemporal energy mechanisms [14], [12]. In these 
models, the squared outputs of a set of oriented 
spatiotemporal subband filters are combined to produce 
local measures of motion energy. Thus, multiple motion 
analysis is addressed from the standpoint of orientation 
analysis using steerable filters [14]., [20]. In this 
framework, locating and analyzing interesting events in a 
sequence by considering the actual spatiotemporal 
evolution across a large number of frames can be done 
without the need for, e.g., a computationally expensive 
optical flow estimation assuming spatial coherency (e.g. 
image gradients). 

Section 2 provides an overview of our enhanced 
spatiotemporal VA model. Section 3 describes the 
subsequent segmentation and feature selection process, 
while section 4 presents the SVM employed for 
classification. Results on VA-based classification are 
given in section 5 and conclusions are drawn in section 6. 
 

2. ENHANCED SPATIOTEMPORAL VISUAL 
ATTENTION 

In this section we briefly describe our earlier work on 
spatiotemporal visual attention, [10], [11] that extends the 
spatial visual attention model of Itti et al. [1], and 
comment on the proposed extensions.  
 
2.1 Spatiotemporal VA Scheme 

Initially a video volume for each separate color 
channel (RGB) and intensity ( ( ) 3BGRI ++= ) by 
stacking each frame on of top of the other is generated. 
Fig. 1 illustrates the process on a simple sequence. Two 
trucks are moving towards opposite directions and a box 
in the middle occludes one of them. The initial volume I 
looks like the one depicted in Fig. 1b. For visualization 
purposes we show a transparent view of I. Notice the 
spatiotemporal evolution of the objects that is already 
clear for this simple example. Afterwards, all volumes are 
morphologically filtered by a flat zone approach to avoid 
spurious details or noisy areas that might otherwise be 
erroneously attended by the proposed system. Following 
the structure of the static image-based approach of Itti et 
al., we perform decomposition of the video volume at a 
number of different spatiotemporal scales using Gaussian 
pyramids. The required low-pass filtering and 
subsampling is obtained by 3D Gaussian low-pass filters 
and vertical/horizontal reduction by consecutive powers 
of two. The final result is a hierarchy of video volumes 
that represent the input sequence in decreasing 
spatiotemporal scales. Afterwards, feature volumes for 
each feature of interest, including intensity, color and 
2D/3D orientation are computed [11] and decomposed 
into multiple scales. Every volume simultaneously 
represents the spatial distribution and temporal evolution 
of the encoded feature. The pyramidal decomposition 
allows the model to represent smaller and larger “events” 
in separate subdivisions of the channels. 

A center-surround operation, denoted as , which is 
suitable for detecting locations that locally stand out from 
their surroundings, is implemented in the model as the 
difference between fine and coarse scales for a given 
feature. For example, if ( )σI  is the intensity volume at 
scale σ, c is a set of coarse scales and s a set of finer scales 
the result is obtained by: 

 
I(c,s)=|I(c)  I(s)|           (1) 

 
Afterwards, all intermediate results are processed through 
across-scale addition, ⊕ , which consists of reduction of 
each volume to a predefined scale σ ′  and point-by-point 
addition. The final feature volumes (conspicuity volumes), 
namely I  for intensity, C for color, O for 2D 
orientation and DO3  for 3D orientation are obtained by: 
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(d) (e) 
Figure 1 (a) three neighboring frames of a simple sequence; (b) 
initial video volume; (c)-(e) Saliency volume observed from 
different angles.  The volumes are negative and transparent 
versions of the original ones (for visualization purposes) 
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where N is a normalization morphological operator [11] 
and RG, BY stand for red-green and blue-yellow color 
combinations obtained by 
RG(c,s)=|(R(c)-G(c))  (G(s)-R(s))|      (6) 

BY(c,s)=|(B(c)-Y(c))  (Y(s)-B(s))|      (7) 
The motivation for the creation of the separate channels 
and their individual normalization is the hypothesis that 
similar features compete strongly for saliency, while 
different modalities contribute independently to the 
saliency volume. Finally, a linking stage fuses the 
separate volumes and produces a saliency volume that 
represents interesting events as enhanced (in terms of 
intensity) spatiotemporal regions. Fig 1c-e show 
transparent and negative versions of the saliency volume -
obtained form the simple truck sequence- observed from 
different angles. The spatiotemporal tracks of the cars and 
the box have become salient. Fig. 2 illustrates all 
intermediate steps of the proposed model. The following 

subsections present the proposed changes to our previous 
spatiotemporal VA model [11]. 

2.2 Orientation 

In an attempt to imitate as close as possible the receptive 
field sensitivity profile of orientation selective neurons in 
human primary visual cortex, Itti et al. used Gabor filters 
to obtain local orientation information. One main concern 
of using Gabor filters is the computational complexity. 
The filter should have narrow passband in the frequency 
domain in order to have fine orientation resolution. 
Hence, according to the uncertainty principle the filter 
should have large scale in the spatial domain. 
Nevertheless, fine resolution is not one of our main 
concerns, since the VA model exploits gross orientation 
information. Fine resolution is not a requirement for the 
VA model to capture the dominant orientations. 

The actual drawback is the positive skewness in the 
filter responses of the Gabor wavelets [21], which 
becomes more important when using the 3D version of 
the filter. A 3D Gabor filter operating on a video volume 
is related to motion information. When only one motion is 
present in the video sequence, the maximum (in the 
orientation sphere) is still well localized in spite of the 
skewness. But if we have multiple motions, the 
overlapping of different filter responses, especially the 
overlapping of the skewness will disturb the locations of 
maximal values [20]. 

 In [11] we used morphological tools for obtaining the 
2d and 3d orientation volumes in an attempt to reduce the 
computational complexity without compromising on the 
results’ quality. Orientation information was obtained 
from I using morphological processing with oriented 
structuring elements of the corresponding Gaussian 
pyramids. Although the results were satisfactory we had 
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Figure 2 Spatiotemporal VA scheme 



to face the difficulties in selecting the exact shape and size 
of the structuring elements. The proposed spatiotemporal 
VA model incorporates steerable filters in the orientation  

module. Steerable filters describe a class of filters in 
which a filter of arbitrary orientation is synthesized as a 
linear combination of a set of “basis filters” [14]. The 
spatial orientation volume is obtained by measuring the 
orientation strength along a particular direction θ by the 
squared output of quadrature pair of bandpass filters 
steered to the specific angle. This is called the oriented 
energy [14] E(θ): 
 

( ) 22 ][][ θθθ nnn HGE +=           (7) 
 
where ,  are the nθ

nG θ
nH th derivative of a e.g. Gaussian 

steered at angle θ and its Hilbert transform respectively. 
Freeman et al. extend the filter to the spatiotemporal 

space and parameterize the orientation of the 3D filter 
kernel by the direction cosines between the axis defining 
the direction and the principal axes denoted as α, β, γ. In 
the case of axial symmetric steerable filters the functions 
are assumed to have an axis of rotational symmetry [13]. 
For example the first derivative of a 3D Gaussian function 
G(x,y,z), whose orientation is represented with three 
directional angles (α, β, γ) between the axis through the 
filter lobes and x, y, z axis, respectively is defined as 
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(f) 
Figure 2 row-wise: original frame and the corresponding 3D 
orientation map. 

where Gx, Gy, Gz are the three basis filters realized as 
rotated copies of G along x, y, z axis, respectively. 

In the proposed orientation module we use Gaussian 
axial symmetric steerable filters described and 
implemented by [13]. Notice that the 3D orientation 
module-shown as an independent block in Fig. 2- 
functioning as a representation of inherent video motion 
does not pass through the center-surround differences 
module. Since our intention is to enhance consistent 
motions throughout the sequence, we by-pass this step in 
order to avoid penalizing long smooth motions that may 
be of interest in sports analysis.  

Fig. 3 shows results on neighboring (10 frames apart) 
three frames of the same video shot, where the players are 
moving in various directions. Players’ movements, with 
the one in the foreground moving longer, are 
distinguished from the rest of the regions. Notice the 
activity at the graphics region in the upper right and left 
corners (logos). Since the logo is present throughout the 
clip, its upright 3D orientation value is high 

2.3 PCA normalization/fusion 

There is an intrinsic difficulty in combining all the 
volumes resulting from the various feature extraction 
stages of the model. When no knowledge about the scene 
exists, there is no way to bias the system towards specific 
(salient) features. The spatiotemporal feature volumes 
represent a priori not comparable modalities, with 
different dynamic ranges and meaning. Due to the lack of 
top-down supervision (knowledge), there is a need for a 
fusion scheme that will enhance high activation areas and 
suppress others. Such a scheme will enhance the most 
salient subvolumes so as to prohibit non-salient regions 
from drastically affecting the result. There are two 
different types of fusion schemes found in the VA model: 
(a) Intra-fusion concerning fusion among volumes of the 
same feature (e.g. combination of volumes enhancing 
different orientations) and (b) inter-fusion concerning 
fusion among volumes of different modalities (e.g. 
combination of intensity, color and orientation). In our 
previous work, [10], [11], we applied a morphological 
transform N for intra-fusion and a simplified averaging 
operator for obtaining the final saliency volume (inter- 
fusion). Both operators were based on Itti et al.’s 
rationale. Although, the results were satisfactory we often 
obtained vague results due to the objectivity of the 
normalization operator’s parameters and the blurring 
coming out of the final averaging operator.  



Principal component analysis is a coordinate 
transformation typically associated with multivariate 
statistics. PCA finds orthogonal linear combinations of a 
set of features that maximize the variation contained 

within them, thereby displaying most of the original 
variation in a smaller number of dimensions. 

Hence, it transforms a multidimensional space to one 
of an equivalent (or less) number of dimensions by 
creating a new series of images (components) in which 
the axes of the new coordinate systems point in the 
direction of decreasing variance. In the transformed space 
the first dimension contains the most variability in the 
data, the second the second most, and so on. 

Although PCA is a common technique in the field of 
multi-band (e.g. spectral) imaging for contrast 
enhancement, visualization and compression purposes 
[16], [17], several researchers have used it for video 
content analysis and feature extraction [15]. The main 
strategy is to condense local spatial information and to 
preserve the temporal information by keeping all such 
reduced spatial information for all frames [15]. We use 
PCA for both normalization of similar content volumes 
and fusion of the conspicuous ones. We extract the feature 

volumes, reorder them into row vectors and stack them 
into a matrix. Hence, the matrix has one row for each 
input volume. PCA is applied to this matrix and we keep 
only the first principal component (PC1), which includes 
those spatiotemporal regions that contribute more to the 
variance of the input data. The normalized volume is 
obtained by rearranging PC1 vector into a 3D matrix 
(volume). 
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Figure 3 (a) Original frame; (c)-(e) Orientation maps at 0o, 45o, 
90o, 135o  respectively; (f) fusion with N and average; (g) 
fusion with PCA 

For example, when PCA is used as a normalization 
operator (NPCA), we avoid the simplistic averaging one 
and Eq. 4 becomes 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ⊕⊕

==
)),((

22
scNNO PCA

sc
PCA

ii

O
σσ

    

 
All other equations describing the model in section 2 are 
accordingly changed. Using NPCA, rather than an operator 
based on local maxima detection [1], [10], [11], we ensure 
that we keep the data that are responsible for the most 
variability in the input volumes.  

 Figs. 4, 5 show the performance of the PCA operator. 
Fig. 4 b-e show the four 2D orientation bands (0o, 45o, 
90o, 135o) obtained with steerable filters for a specific 
frame. Fig. 4f contains the result of applying the 
normalization operator N and fusion by averaging, while 
Fig. 4g is the result of applying PCA for both 
normalization (NPCA) and fusion. Notice the difference in 
contrast between the last two images. PCA-based 
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Figure 4 columnwise: original frame, average-based saliency, 
PCA-based saliency  



enhancement/fusion performs better and enhances 
(retains) areas with salient activity like the players, parts 
of the audience and graphics. Same remarks are obtained 

from the results illustrated in Fig. 5. The original frame, 
the saliency obtained by averaging all  

conspicuity volumes and the corresponding results 
using PCA are shown in a column-wise order.  

 
3. SEGMENTATION & FEATURE EXTRACTION 

The final saliency volume encodes the per voxel saliency 
of the original video. Obtaining a meaningful 
spatiotemporal segmentation of the saliency volume is not 
a simple and straightforward task. Since our main goal is 
the classification of sport videos, a gross segmentation of 
the saliency volume should be adequate because separated 

objects (e.g. players, ball, goal post, tennis net etc.) are 
not of primary interest. Hence, we adopt a simple 
segmentation technique that allows for non-hard 
thresholding and labeling of the various salient 
subvolumes. K-means is used to partition the final volume 
into regions of different saliency. Voxels are clustered in 
terms of their saliency value (intensity of each voxel) and 
a predefined number of clusters are extracted. Afterwards, 
we order the clusters in increasing order of saliency, 
discard the less salient one and label the rest.    

   

   

   

   

   

   

   
Figure 5. Indicative results on salient region extraction and 
segmentation for sports sequences. 

Usually, the less salient regions are related to areas 
that are consistently present throughout the clip like the 
play-field or parts of the audience. Nevertheless, it is 
common sense that e.g. the color of the play-field may 
provide strong discrimination among several sport classes 
(e.g. basketball, soccer, swimming, table-tennis). In order 
to avoid misunderstandings, we emphasize that the gross 
segmentation achieved by the previous method does not 
exclude thoroughly the play-field. Large parts of it are 
preserved and provide the desired discrimination among 
the classes mentioned before. 

 Our claim is simple and is related to the core idea of 
visual attention. We expect that the less salient regions are 
not representative of the spatiotemporal video evolution 
and therefore features extracted from them could confuse 
the classifier and increase the classification error. 

 In order to emphasize on the performance 
improvement achieved by the spatiotemporal saliency 
learning, we calculate the same simple features both on 
each separate (labeled) salient subvolume and the whole 
video volume. For this, we use color histograms to 
represent the color distribution among the RGB channels 
and a set of co-occurrence features for texture. Global 
color histograms are simple descriptors, fast to compute, 
and scale/rotation invariant; they also work on partial 
images. To keep the feature space low, we calculate color 
histograms by quantizing them in a small number of bins 
and obtain four texture measurements, namely entropy, 
inertia, energy and homogeneity from the co-occurrence 
matrix. 

In order to formulate the above features into a single 
vector, we keep the three most salient regions, and, for 
each one, we encode the color histograms using 8 bins per 
color channel (i.e., 24 elements per region), and the 
texture features using each of the above measurements for 
4 different region slices (i.e., 16 elements per region). The 
total size of each feature vector is thus 120. 

 
4. SVM CLASIFFIER 

An SVM [3] performs pattern recognition for 
dichotomic classification problems (binary classification). 
It maximizes the distance between a hyperplane w and the 
closest samples to it, with the constraint that the samples 
from the two classes lie on separate classes of the 



hyperplane. These closest points are called support 
vectors. Given a training set of instance-label pairs 
( , ), 1,...,i ix y i l=  where  and , the 
SVMs require the solution of the following optimization 
problem: 
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where the training data xi are mapped to a higher 
dimensional space by function φ  and the second term of 
(1) is the penalty term with parameter C. 

The multi-class classification problem is commonly 
solved by a decomposition to several binary problems for 
which the standard binary SVM can be used. The one-
against-all decomposition is often applied. In this case the 
classification problem to k classes is countered by training 
k different classifiers, each one trained to distinguish the 
examples in a single class from the examples in all 
remaining classes. When it is desired to classify a new 
example, the k classifiers are run, and the classifier which 
outputs the largest (most positive) value is chosen. 

In this work, we train the SVM classifiers using a 
radial basis function (RBF) kernel after appropriately 
selecting a model. For model selection we perform a 
“grid-search” on the regularization parameter 

 using 5-fold cross-validation. After 
obtaining the parameter that yields the lowest testing 
error, we perform a refined search in a shorter range and 
obtain the final parameter value, which is selected for the 
classifiers.  

0 1 2 3 4{2 , 2 , 2 , 2 , 2 }C =

 
5. VA-BASED CLASSIFICATION  
 
5.1. Experimental Setup 
To demonstrate the potential of the proposed scheme we 
select a number of videos from seven different sports. 
Soccer (SO), swimming (SW), basketball (BA), boxing 
(BO), snooker (SN), tennis (TE) and table-tennis (TB) are 
the seven predefined classes of shots we use for 
conducting our experiments. The abbreviations in 
parentheses are used tin Tables 1, 2 that present the 
classification results. Most of the clips are from the 
Athens Olympic Games 2004.  Each class includes far- 
and near-field views, close-ups on players and frames 
where all the playfield, players and audience are present. 
The length of the shots ranges from 6 to 7 seconds. All 
clips, each consisting of a single shot, are resized to have 
the same spatial dimensions and were manually annotated 
as belonging to either of the given classes. The 
spatiotemporal saliency volume was obtained using the 

proposed algorithm. The saliency volume is clustered as 
described in section 3. The less salient region is discarded 
and features are extracted from each of the remaining 
salient ones. Fig. 6 shows indicative frames of each class 
and the obtained saliency masks corresponding to the 
three most salient regions. The third column shows the 
segmentation of the saliency mask. The black region is the 
less salient one, while the three gray levels represent the 
regions from which the features are extracted. 
 
5.2. Results 
 Results in the form of confusion matrices are given in 
Tables 1 and 2. Each row shows the classification of 
ground truth, with the last two being the precision and 
recall for each class. For example, the first row of Table 1 
shows that 20 snooker video shots are misclassified into 
soccer and 5 into basketball shots. Table 1 summarizes the 
results obtained by extracting features on the whole video 
volume without selecting salient regions, while Table 2 
shows results using the spatiotemporal salient region 
selection with the proposed enhancements. The overall 
classification error on the test data for the multiclass 
problem in the case of no region selection is 26.37%. 
There is an improvement achieved through VA selection 
and the error falls to 15.38%. 

Although the error improvement is not tremendous, 
there is an interesting result that supports our initial claim 
that the salient region selection may provide the feature 
extractor with regions that represent the video content 
more efficiently. Pairs of classes, like soccer-snooker or 
basketball-table tennis, have similar global characteristics 

due to the similar color of the playfield and the Athens 
2004 advertisements (blue-white). That’s why the 
statistics for those classes in Table 1 are not satisfactory 

Table 1. Confusion matrix of test data after classification 
without saliency (overall testing error: 26.37%). 

 SN SW BA BO SO TE TB 
SN 35 0 5 0 20 0 0 
SW 0 50 0 0 0 0 0 
BA 0 0 70 5 5 10 10 
BO 0 0 5 35 0 0 0 
SO 10 0 5 0 60 5 0 
TE 0 0 20 0 5 50 0 
TB 0 0 15 0 0 0 35 
Prec 0,778 1,000 0,583 0,875 0,667 0,769 0,778 
Rec 0,583 1,000 0,700 0,875 0,750 0,667 0,700 

However, Table 2 shows improved results. In order to 
emphasize on this remark we attempted a binary 
classification using only the specific pairs of classes for 
training and testing. The best classifier is selected as. 
explained above. The results revealed the discrimination 
power of the proposed method. The overall testing error 



for saliency-based learning was much lower, as reported 
in Table 3.  

 

 
6. CONCLUSIONS 

In this paper we propose an enhanced version of our 
spatiotemporal VA scheme and experiment on its 
potential to improve the performance of an SVM classifier 
in learning and classifying video clips of seven sport 
classes. The results are promising and show that the 
proposed region selection improves the classification 
accuracy, regardless of the simple features employed, 
which are independent of the specific domains tested. The 
improvement of classification accuracy is not impressive,, 
but we believe that minor enhancements on the 
implemented model should boost further the classifier 
performance. For example, we noticed that graphics 
related to specific sports (e.g. score tables) become salient 
because of their repeating appearance, but are quite 
similar in terms of color/texture and thus do not provide 
enough discrimination among sports. Occasionally, the 
same holds for parts of the audience. Probably a filter on 
high texture activity (audience is highly textured) could be 
applied in order to get rid of those areas.  Generally, 
ignoring such problematic regions or treating them in a 
different way than other ones should improve the 
statistics. Additionally, exploring more advanced features 
that fit well with the application in hand is in our future 
plans. 
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